Microclimate

Toolbox Talk

01 6

The atmosphere that surrounds us in our working area is called a thermal environment or microclimate.

Overheated working areas may cause heat stress that can:

- Cause damage to physical and mental health
- Cause fatigue or exhaustion at the body's thermoregulation system
- Limit the ability to react to external stimuli
- Be a parameter of increasing work-related accidents

- Impact on health from heat stress
 - Problems such as cramps, electrolyte deficiency, dehydration, skin rashes, heat swelling, decreased capability for physical and mental work etc.
 - Serious diseases such as heat exhaustion, total body exhaustion that can cause serious injuries, heat stroke etc.
- Temperatures below 16°C may cause respiratory problems, increased pressure and fatigue of the cardiovascular system, etc.

- Excessive air velocity creates air streams that are defined as localized feelings of heat or cold in any area of the body and can cause irritation.
- On the other hand, excessively low air velocities, ranging from 0.08m/s and below, cause a feeling of stagnant air and a concentration of pollutants that are the same annoying and should therefore be avoided.

• Parameters for determination of the working thermal environment

Physical parameters	Other parameters
Air Temperature	Workload
Air Relevant Humidity	Clothing
Air velocity	Exposure duration
Thermal radiation	Health Condition

*Physical activity increases body temperature around 0,5oC for average work and above 4°C for heavy work.

Legislation

Temperature-Relevant Humidity

The acceptable combinations of temperature and relative humidity, according to the standards of the ASHRAE (American Society of Heating, Refrigeration and Air Conditioning Engineers) No 55-1992 and the International Organization for Standardization ISO 7730-1993, are:

20-23.5 °C for the winter 23-26 °C for the summer

With relevant humidity between **30 and 60%**

Thermal Comfort Index

For the thermal environment assessment, the ISO, standard 7243 has proposed the bioclimatic index **WBGT**- Liquid temperature index- (wet bulb globe temperature). That index is calculated through the following types:

- Internal spaces: WBGT=0.7tnwb+0.3tg
- External spaces: WBGT=0.7tnwb+0.2tg+0.1ta

where,

tnwb: the indication of the wet bulb thermometerta: the indication of the dry bulb thermometertg: the indication of the black globe thermometer

Measurement of harmful factors

□Preliminary examination

- Collection of information (former measurements)
- Indicative measurements

Measurements Strategy

- Choice of factors that will be measured
- Finding appropriate methodology and measurement instruments
- Conversation with the responsible persons for the accurate definition of the time and points of measurement

Conducting measurements by also recording the exact environmental conditions Results

- Recording and evaluating the results
- Conclusions

Measurements Repetition

Measurement of harmful factors

Results must be managed as follows:

- Recording the instrument output
- Evaluation
- Comparison of the results with the corresponding limit values
- Conclusions
- Proposals to reduce the exposure

Measurements repetition if necessary

Technical Documentation

effnms European Federation of National Maintenance Societies vzw

- Choice of approved methods
- Instrument maintenance and calibration accompanied by the valid certificate
- Comparison of results with legal limits and recommendations based on other directives

Temperature and relevant humidity measurements

Digital thermometers

Wet Bulb Thermometer ⇒ WB

In this case the bulb is covered by the wick which has been dampened by distilled water.

The water evaporation absorbs heat that yields the thermometer indication.

Dry bulb thermometer ⇒ DB

It is the highly widespread mercury thermometer used to measure the temperature of the air

Black bulb thermometer ⇒ GT

It consists of a copper ball painted on its outer side in black matte color and is used for measuring the thermal radiation

- Wet bulb thermometer ⇒ WB
- Dry bulb thermometer ⇒ DB
- Black bulb thermometer ⇒ GT

Thermal Comfort Index WBGTinter.=0.7WB+0.3GT WBGTexter.=0.7WB+0.2GT+0.1DB

Area Heat Stress Monitor

Air Velocity measurements

When measuring, the white dot on the sensor must be opposite to the wind direction

Wind direction

Anemometer

